Preisträger 2012
Nachweis, Identifizierung und Quantifizierung pilzlicher Blattkrankheiten der Zuckerrübe mit abbildenden und nicht-abbildenden hyperspektralen Sensoren
Übergabe des Promotionspreises (von links nach rechts: Professor Dr. Jürgen Fohrmann, Dr. Anne-Katrin Mahlein, Michael Kranz)
Frau Dr. Anne-Katrin Mahlein (Landwirtschaftliche Fakultät)
Betreuer: Professor Dr. Heinz-Wilhelm Dehne
Pflanzenkrankheiten wirken sich auf die optischen Eigenschaften von Pflanzen in unterschiedlicher Weise aus. Verschiedene Bereiche des Reflektionsspektrums werden in Abhängigkeit von Wirt-Pathogen System und krankheitsspezifischen Symptomen beeinflusst. Hyperspektrale, nicht-invasive Sensoren bieten die Möglichkeit, optische Veränderungen zu einem frühen Zeitpunkt der Krankheitsentwicklung zu detektieren.
Ziel dieser Arbeit war es, das Potential hyperspektraler abbildender und nicht abbildender Sensoren für die Erkennung, Identifizierung und Quantifizierung von Pflanzenkrankheiten zu beurteilen. Zuckerrübenblätter wurden mit den pilzlichen Erregern Cercospora beticola, Erysiphe betae bzw. Uromyces betae inokuliert und die Auswirkungen der Entwicklung von Cercospora Blattflecken, Echtem Mehltau bzw. Rübenrost auf die Reflektionseigenschaften erfasst und mit optischen Bonituren verglichen. Auf den Skalenebenen Blatt, Bestand und Feld wurden Messansätze mit unterschiedlichen Sensoren verglichen. Besonders berücksichtigt wurden hierbei Anforderungen an die spektrale, räumliche und zeitliche Auflösung der Sensoren. Ein weiterer Schwerpunkt lag auf der Beschreibung der spektralen Eigenschaften von charakteristischen Symptomen. Verschiedene Auswerteverfahren wurden mit dem Ziel angewendet, einen maximalen Informationsgehalt aus spektralen Signaturen zu gewinnen.
Jede Krankheit beeinflusste die spektrale Reflektion von Zuckerrübenblättern auf charakteristische Weise. Differenz der Reflektion, Sensitivität sowie Korrelation der spektralen Bänder zur Befallsstärke variierten in Abhängigkeit von den Krankheiten. Eine höhere Präzision durch die pixelweise Erfassung räumlicher und zeitlicher Unterschiede von befallenem und gesundem Gewebe konnte durch abbildende Sensoren erreicht werden. Spektrale Vegetationsindizes (SVIs), mit Bezug zu pflanzenphysiologischen Parametern wurden aus den Hyperspektraldaten errechnet und mit der Befallsstärke korreliert. Die SVIs unterschieden sich in ihrer Sensitivität gegenüber den drei Krankheiten. Durch den Einsatz von maschinellem Lernen wurde die kombinierte Information der errechneten Vegetationsindizes für eine automatische Klassifizierung genutzt. Eine hohe Sensitivität sowie eine hohe Spezifität bezüglich der Erkennung und Differenzierung von Krankheiten wurden erreicht. Eine Quantifizierung der Krankheiten war neben der Detektion und Identifizierung mittels SVIs bzw. Klassifizierung mit Spektral Angle Mapper an hyperspektralen Bilddaten möglich.
Die Ergebnisse dieser Arbeit tragen zu einem besseren Verständnis der optischen Eigenschaften von Pflanzen unter Pathogeneinfluss bei. Die untersuchten Methoden bieten die Möglichkeit in Anwendungen des Präzisionspflanzenschutzes implementiert zu werden, um eine frühzeitige Erkennung, Differenzierung und Quantifizierung von Pflanzenkrankheiten zu ermöglichen.